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By considering the entrainment effect on the intermittency in the free boundary of 
shear layers, a set of turbulence model equations for the turbulent kinetic energy k, 
the dissipation rate B ,  and the intermittency factor y is proposed. This enables us to 
incorporate explicitly the intermittency effect in the conventional k - B turbulence 
model equations. The eddy viscosity vt is estimated by a function of k, e and y. In  
contrast to  the closure schemes of previous intermittency modelling which employ 
conditional zone averaged moments, the present model equations are based on the 
conventional Reynolds averaged moments. This method is more economical in the 
sense that it halves the number of partial differential equations to be solved. The 
proposed k - 6 -  y model has been applied to compute a plane jet, a round jet, a plane 
far wake and a plane mixing layer. The computational results of the model show 
considerable improvement over previous models for all these shear flows. I n  
particular, the spreading rate, the centreline mean velocity and the profiles of 
Reynolds stresses and turbulent kinetic cnergy are calculated with significantly 
improved accuracy. 

1. Introduction 
During the last two decades, intensive research effort has been devoted to 

developing more general computational turbulence models. Unfortunately, however, 
the predictability of all current turbulence models is still dependent on the flow 
configuration. For example, even though the flow geometries and boundary 
conditions of evolving turbulent free shear flows are very simple and well defined, 
accurate predictions with the available variants of the k - - ~  or Reynolds stress 
models invariably require adjustment of the model constants according t o  the flow 
geometry, e.g. planar or axisymmetric, as well as to the flow type, e.g. a jet, a wake 
or a mixing layer. 

Specifically, the predictions of a round jet and a plane jet with the same model 
constants show inconsistent results : if the model constants are adjusted to obtain the 
correct spreading rate of the plane jet, the computed spreading rate of the round jet 
is higher than that of the plane jet by as much as depending on the 
computational model. Most experiments indicate, however, that the round jet 
spreads about 15% slower than the plane jet. This contradictory behaviour of 
turbulence models in computing the jet flows is termed the round-jetlplane-jet 
anomaly (Pope 1978). A number of attempts to  remedy this defect have been made; 
see Launder et al. (1972), McGuirk & Rodi (1977), and Morse (1977). However, since 
they only modified the model constants in the dissipation equation with reference to 
the decay rate of the jet centreline mean velocity, general validity of their models to 
other flows is questionable. Pope (1978) attributed the anomaly in predicting the 
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round jet to the neglect of the mean vortex stretching effect in the source term of 
the dissipation equation, and he introduced a vortex stretching invariant term 
x = ( k / ~ ) ~ 5 2 ~ ~ 5 2 ~ ~ S ~ ~ ~  where a,, and Sij are the rate of mean rotation tensor and the 
rate of mean strain tensor, respectively. Thc invariant x is zero in the plane jet, and 
positive in the round jet. Hence, the turbulent eddy viscosity estimated by vt - k2/s 
can be effectively reduced by the increased dissipation rate owing to the positive 
source term x in the dissipation equation, and, consequently, the spreading rate can 
be correctly predicted in a round jet without affecting the predictability for the plane 
jet. It should be noted that Pope’s model constant) value of 0.79 was determined by 
referencing only the round jet in stagnant surroundings. Huang (1986) showed that 
the adoption of x deteriorates the computational results for a round jet in a co- 
flowing stream. Recently, Sohn, Choi & Chung (1991) applied Pope’s model in 
calculating the flow over a ship’s hull at  the plane of symmetry. The invariant x 
becomes positive near the stem and it is negative near the stern, owing to the 
divergence and convergence of the mean flow, respectively. They found that good 
prediction can be obtained only when Pope’s model constant is readjusted to be 
about 0.4, nearly half the original suggested value. These two investigations reveal 
that, although Pope’s model effectively resolves the round-jet/plane-jet anomaly, 
the suggested value of the model constant may be too high. Also the model may not 
be appropriate for round jets with different outer boundary conditions. Noting that 
the spectral energy transfer rate across the wavenumber, which is nearly equal to the 
dissipation rate, is significantly promoted by irrotational deformations, Hanjalic & 
Launder (1980, hereinafter referred to as HL) suggested that in the dissipation 
equation the effect on the source term for the dissipation by the normal strain is a 
factor of about 3 greater than that caused by the shear strain. When their model is 
applied to a round jet, the prediction of the spreading rate is substantially improved, 
but it is still higher by about 14% than the experimental observation of Rodi (1975). 
There was another attempt to resolve the anomaly by Hanjalic, Launder & Schiestel 
(1980, hereinafter referred to as HLS). They suggested dividing the energy- 
containing part of the spectrum of turbulence into two regions which respond at 
different rates and in different ways to changes in the mean velocity field. Then two 
different parts of the k--E equations were formulated for each region. Their model 
was termed a two-scale turbulence model. However, the computed spreadipg rate 
and the profiles of the computed turbulence quantities did not show m y  
improvement over those of HL. Such anomalous problems with the eddy-viscosity 
models described above are also common even with the Reynolds stress model; the 
main source of error has been known to be in the dissipation equation (Launder 
1984). 

In the 198&8 1 AFOSR-HTTM-Stanford Conference on Complex Turbulent 
Flows (hereinafter, the conference proceeding is referred to as SCPSO), another 
anomaly was found in predicting the simple plane far wake with both the eddy- 
viscosity model (SCPSO, pp. 1306, 1401) and the algebraic Reynolds stress model 
(SCPSO, p. 1401). The plane-wake/plane-jet anomaly is such that, although available 
experiments show that both flows have similar spreading rates (Rodi 1975), the 
spreading rate of the plane far wake is under-predicted, by as much as 30% below 
experimental values, when the model constants are adjusted with respect to the 
plane jet. The full Reynolds stress model shows the same defect (Launder, Reece & 
Rodi 1975). Even the models of Pope, HL and HLS which have been proposed to 
resolve the plane-jet/round-jet anomaly, are not effective in settling the plane- 
wake/pIane-jet anomaly for the following reasons. Pope’s model does not work since 
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the vortex stretching is zero in these plane flows. HL model is not effective for the 
far wakc since the normal strain vanishes in the downstream region. HLS reported 
that their two-scale model under-predicted the spreading rate of the plane far wake 
by about 30 YO. Rodi (1972) recommended an empirically-determined eddy viscosity 
coefficient which is a local variable and depends on the average ratio of turbulent 
energy production to  dissipation. But the improvement by this model is only 
marginal (Patel & Scheuerer 1982). 

The plane mixing layer was also selected as a target flow for the evaluation of 
turbulence models in the 1980-81 Stanford Conference. Despite the simplicity of this 
flow, the computational result posed a fundamental problem for the conventional 
physical modelling (SCPSO, pp. 731, 1400). The computed mean velocity profile by 
the k - E model approaches the free-stream velocity too fast near the higher-velocity 
region, and the predicted Reynolds stresses in this region are much lower than the 
experimental values. Such a discrepancy was also observed for the Reynolds stress 
model of Launder et al. (1975). The spreading rate was 0.094 with the standard k--E 
model, and 0.106 when the model constant C,, was changed to  match the initial 
development of the target flow (SCPSO, p. 1166). These values are smaller than the 
experimental value of 0.115, recommended by Birch (SCPSO, p. 170). 

Another severe problem in calculating the far wake is that the predicted mean 
defect-velocity drops too rapidly in the outer region. This is common to all 
turbulence models mentioned above. Patel & Scheuerer (1982) noted that a 
turbulence model constructed essentially for fully turbulent flows cannot be expected 
to  work in the outer layer contaminated with the irrotational flow. They suggested 
a new eddy-viscosity relation modified with an intermittency factor, y.  Their model 
improved the prediction of the mean velocity profile, particularly in the outer region, 
but the maximum Reynolds shear stress and the spreading rate were still about 25 % 
lower than the experimental values. A theoretical analysis of intermittent flow to 
derive a computational intermittency model was presented by Libby (1975, 1976) 
and i t  was followed by Dopazo (1977) and Chevray & Tutu (1978). A few useful 
computational schemes were developed a t  the k - e  level by Byggstoyl & Kollmann 
(1981), and a t  the second-order level by Janicka & Kollmann (1983) and Byggstoyl 
& Kollmann (1986). An alternative approach to  take into account the intermittent 
nature of the flow by utilizing the probability density function has been suggested by 
Kollmann & Janicka (1982)) Pope (1984) and Haworth & Pope (1987). These models 
reproduce the general behaviour of various free shear flows, and reveal many flow 
characteristics which cannot be obtained with the conventional turbulence models. 
However, from the viewpoint of the previous anomalies, all these intermittency 
models suffer from the same defects as those of the conventional physical modelling. 

The present study is aimed a t  resolving both anomalies described above by 
including the intermittency factor in the conventional k - E turbulence model. In  
order to simplify the discussion of the problem under consideration, our attention is 
confined to  two-dimensional and axisymmetric simple flows. Contrary to the current 
intermittcncy modelling method which uses separately the turbulent zone averaged 
moments and the irrotational zone averaged ones, the conventional Reynolds 
averaged moments are adopted in our k--s -  y modelling. With this strategy, the 
number of transport equations to be solved can be reduced, and the present method 
may be easily extended to  other popular higher-order turbulence models. 
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2. The eddy-viscosity model with the intermittency factor 
The eddy viscosity vt is basically a phenomenological quantity. From dimensional 

analysis, it  is proportional to a characteristic velocity scale u and a lengthscale I at 
a point in the flow, i.e. vt = Cul, where C is a proportionality constant. At present, 
the eddy-viscosity model estimated by the turbulent kinetic energy k and the rate of 
dissipation e is most popular and well established. I n  this k - e  model, i t  is assumed 
that u - k0.5 and that 1 - k 1 . 5 / ~ .  In the intermittent flow region, however, there 
exists an additional velocity scale of the mean velocity difference between the 
turbulent fluid and the irrotational one. The effect of such a velocity difference on the 
eddy viscosity can be conjectured from the following exact shear stress relationships 
(Chevray & Tutu 1978): 

- - = - N Z Z  

uiuj = y u x +  (1  - y )  uiuj+ y (  1-7) (ui- Ui) (ui- U,) (i * j), (2.1) 

where = and N denote, the turbulent and the irrotational (or non-turbulent) zone 
averages, respectively. The sum of the first and second terms on the right-hand side 
represents the momentum transport due to the fluct,uating velocity. Hence, the usual 
gradient transport approximation may be applied as follows : 

where Sii = t(U,,,+ U,# i ) .  I n  obtaining this relation, we have further assumed that the 
turbulent and the irrotational zone momentum transports together can be 
approximated by the conventional Reynolds averaged quantities with an unknown 
functional coefficient Fl(y). The last term of (2.1) reveals that the mean velocity 
difference between the two fluids contributes also to the momentum transport by the 
bulk convective motion. Lumley (1980) supposed that the velocity 'jump ' is caused 
by the intermittency gradient and by the mean velocity 'jump ' itself: 

where F,(y) and F J y )  are unknown functions. From the above three equations, the 
following relation can be obtained for a thin shear flow : 

l + y ( l - y ) F x 1 2 - -  S,, (i *j), 
2~~ 2F axkaxk ay  "'I 

where the intermittency gradient originates from the mean velocity jump, and the 
bracketed term may be understood as a correction to the velocity scale. From this 
basic functional form, we propose the following eddy viscosity relation : 

where 

- 
-uiu, = 2vts i j  (i + j ) ,  (2.5) 

The data of Rodi (1975, p. 147) show that the parameter CL increases monotonously 
to infinity in the outer region of free shear layers where the intermittency factor 
decreases from one to  zero. Since the cross-stream gradient of y is approximately 
proportional to y ( 1 -  y )  for the free-boundary-layer-type flows (Byggstoyl & 
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Kollmann 1981), and since the lengthscale Z( N k ’ . 5 / ~ )  is fairly constant in this region, 
it is necessary to  have m > 2 in order to reproduce the observed variation of Ck in 
Rodi (1975). By referencing the eddy-viscosity distribution in the intermittent 
region of a plane jet (Ramaprian & Chandrasekhara 1985), the value of m was 
selected to be 3, approximately. Note that the above eddy-viscosity model reduces 
to the usual form in the fully turbulent zone where y = 1.0. 

3. The intermittency equation 
Although Libby (1975) postulated a transport equation for the intermittency 

factor, the exact formulation has been provided by Dopazo (1977) by conditioning 
thc instantaneous continuity equation with an  intermittency indicator function. 
The indicator function is a train of pulses denoting ‘ one ’ and ‘zero ’ as the passage 
of turbulent and irrotational fluid, respectively, a t  a given point in the flow field. 
According to him, the intermittency equation is a continuity equation for the 
turbulent fluid alone, and it reads: 

where 
- a 

g - ax, D = -[ - y(1- y )  (Q- E,)], 

and 
vol + 0 

(3.3) 

In (3.3), Ve is the speed of advance of the turbulent-irrotational interface S ( x , t )  
relative to the fluid element. Dg represents the spatial transport of the intermittency 
factor y owing to  the mean velocity jump between the two fluids. If the convection 
velocity in (3.1) is taken as the turbulent zone mean velocity, the term D, vanishes. 
With the aid of Lumley’s velocity jump model of (2.3), Byggstoyl & Kollmann (1981) 
proposed estimating D, for thin shear flows by the following diffusion model : 

(3.4) 

The second term 8, in (3.1) represents the conversion rate of the irrotational fluid 
to the turbulent one per unit volume. A model for the source term, S,, was first 
proposed by Libby (1975) and then investigated by Chevray & Tutu (1978), Lumley 
(1980), Byggstoyl & Kollmann (1981, 1986) and Pope (1984). Among them, the 
model of Byggstoyl & Kollmann (1986) has been widely applied to various flows. In  
the present study, their model is slightly modified to  have the following form: 

P k , s + P k , n  k2 ay + c,, - - - , 
8; = Cg,Y(l--Y) k ax,ax, (3.5) 

where Pk,s and Pk,n represent the production of turbulent kinetic energy by the shear 
and normal strains, respectively, and they are defined in (4.2). The first term in the 
right-hand side of (3.5) expresses the generation of y owing to the production of the 
turbulent kinetic energy. The second term represents the increase of y by the spatial 
inhomogeneity or the gradient of y itself. Equation (3.5) differs from the original 
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version of Byggstoyl & Kollmann (1986) in that the turbulent zone quantities are 
simply replaced by the respective unconditional averages. Another difference is that 
the sink term, -C‘y(l-y) Elk,  in their original model has been dropped. The reason 
is that such a destruction effect can be included implicitly in the first source term by 
decreasing the model constant C,, since E ‘Y (Pk,s+Pk,n) is a fairly good approxi- 
mation in the outer region of free shear flows. 

Evidently, the intermittency a t  a point must be dependent on entrainment of the 
surrounding irrotational fluid as well as on the spatial transport D, and the source 
like SL in (3.5). However, (3.1), together with models (3.4) and (3.5), does not include 
the important contribution from such an entrainment process. The transport of 
intermittency by the entrained mass is similar to that by the convective motion. At 
the first stage of the mass entrainment process, the smallest-scale eddies cause the 
contortion of the turbulent-irrotational interface, therefore, viscosity acts to  
propagate vorticity into the irrotational fluid. At the later stage, however, the net 
rate of propagation or entrainment is controlled by the speed at which the 
contortions with largest scales move into the surrounding fluid. The organized eddies 
with their axes parallel to  the direction of extension by the mean velocity gradient 
are more effective for the entrainment than the randomly oriented eddies. 
Eventually, the presence of the mean velocity gradient dominates the intermittency 
transport by the entrainment (Townsend 1976, p. 235). Meanwhile, since the mass 
entrainment is a passive process, the overall entrainment velocity must be 
proportional to the negative of the maximum mean pressure slope, -V(P/p), where 
P is the mean static pressure and p is the fluid density. Here, the gradient of P may 
be determined by the Bernoulli relation for nearly irrotational incompressible flow : 

-V(P/p) x V(4U. v). (3.6) 

It has been shown by Tennekes & Lumley (1972, p. 119) and Townsend (1976, p. 247) 
that the entrainment velocity is also proportional to the relative turbulent intensity, 
k0.”1vl. In  addition, the transported intermittency a t  a given point by the 
entrained mass should be proportional to - Vy. Consequently, the interaction 
between the mean velocity gradient and the intermittency field contributes to 
transport the intermittency by an amount, 

where 

kf k 
8, = C,,-V(~U. u) - ( -Vy) - 6 y( 1 - y )  Ivl 

requirement and for 
irrotational one. The 

In (3.7), y (  1 - y )  k / s  has been multiplied for dimensional 
physical consistency with the fully turbulent fluid or fully 
newly defined quantity r may be interpreted as a non-dimensional invariant of the 
interaction which represents the amount of intermittency entrained by the 
interaction between the mean velocity gradient and the intermittency field per unit 
volume of fluid. It is noted that when the frame of reference is moving a t  a constant 
velocity U,, then the velocity U in (3.8) must be replaced by U- U, to  secure the 
Galilian invariance of the scalar r. Note that the final form of S,  in (3.7) is consistent 
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with the physical reasoning described above. Now, then, the source S, in (3.1) can be 
represented by the following equation : 

s, = sg+s, 
pk, s + 'k, n IC2 a? ay 8 + c,, ---r c,, y( 1 - y )  -r. 

k ax,axj k = C,lY(l -Y) (3.9) 

-- 
4. The dissipation equation for the turbulent kinetic energy 

Since we are interested in working out the ariomalies in computing turbulent free 
shear flows, we start with the following dissipation equation which includes both 
HL's preferential normal strain term and Pope's (1978) vortex stretching invariant. 

where 

When this equation was utilized in calculating turbulent free shear flows with the 
k - E model or the Reynolds stress model during the initial stage of the present work, 
it turned out that the calculated dissipation rate was lower than the experimental 
value in the jet, and higher in thetwake. Such a discrepancy is thought to be the 
critical source of the anomalies, which suggests'that thire should be another physical 
mechanism participating in the dissipative process. 

Extending the discussion about the intermittency a8 given in $3, undoubtedly, the 
rate of dissipation at a point must also depend on the' level of intermittency. When 
the intermittency is low, the small-scale eddies are relatively inactive and the 
turbulent kinetic energy is slowly dissipated.'However, when it is high, the energy 
dissipation should be increased by the presmee of the fine scale eddy motions 
embedded in the energetic large straining eddies in  the interactive shear layer 
between the turbulent and irrotational zones. One of the most convenient measures 
of such an additive source (or sink) of dissipatioli owing to the entrainment of more- 
irrotational fluid into that point under consideration is the intermittency interaction 
invariant f'. Therefore, it is suggested that one more source (or sink) term be added 
in the right-hand side of (4.1) as follows: 

It is worthwhile discussing the intermittency invariant term in the above model 
equation from the viewpoint of the lengthscale variation. Consider the two different 
cases depicted in figures 1 (a)  and ( b ) .  In the case of a jet in figure 1 (a) ,  the inner 
product between the entrainment vector, - V(P/p), and the intermittency gradient 
vector, Vy, is positive and the pressure field drives more-irrotationel fluid towards 
the more-turbulent region. Hence, the cross-stream position at which y = 0.5 is 
shifted inward. Since the lengthscale of turbulence 1 .is proportional to the cross- 
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(a)  More-irrotational region (4 More-irrotational region 

------ 
More-turbulent region 

- 
More-turbulent region 

FIGURE 1. An interaction effect of mean shear and intermittency fields. 

stream distance of the point where y = 0.5 from the jet centreline, the inward 
movement of the more-irrotational fluid effectively decreases the lengthscale. I n  
(4.5), the positive value of the intermittency invariant term for case 1 ( a )  acts as a 
source of e, thus E is increased. Therefore, from the relation, 1 - kfle ,  it  turns out that  
the lengthscale does decrease. Similarly, figure l ( b )  shows the converse case which 
represents the wake flow. Here, the inner product - V ( P / p )  -Vy becomes negative 
and the dissipation is reduced ; thus, the lengthscale increases owing to the outward 
movement of the more-turbulent fluid. 

5. Applications of the proposed model to turbulent free shear flows 
The present k - e - y  equation model is applied to compute various two- 

dimensional and axisymmetric turbulent free shear flows, namely, a plane jet, a 
round jet, a plane far wake and a plane mixing layer. For these thin-boundary-layer- 
type flows at  high Reynolds number, the streamwise momentum equation and the 
turbulent kinetic energy equation are as follows : 

au au i a  au a - - 
ax ay r a y [  a,] ax U-+V- = -- rut- --(u2-vz), 

where r is the radial distance from the centreline for axisymmetric flows, and it is 
1 for plane flows. The productions of turbulent kinetic energy are given by 

-au - - au PkSS = -uv-, Pk,n = -(u2-v2)-. 
a Y  ax (5.3) 

Following HL, the normal stress difference may be approximated as a constant 
fraction of the turbulent kinetic energy, or 

_ _  
(u2 - v 2 )  = C,, k. (5.4) 

After transforming the governing equations to a similarity coordinate 7,  the 
numerical solutions are obtained by integrating numerically the resulting nonlinear 
ordinary differential equations with the tri-diagonal matrix algorithm. For each flow 
configuration, a stream function Y(x, 7)  is defined in the same way as Rajaratnam 
(1976). Then, the dependent variables U(x, y), k ( x ,  y), E ( X ,  y), y ( x ,  y) and vt(x, y)  are 
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transformed to the similarity variables W(q) ,  K ( q ) ,  E ( q ) ,  G(q) and D(q) in table 1 ,  
respectively. A preliminary computation in the q-coordinate showed wavelike 
unstable solutions near the outer edge because of the vanishing of the turbulent 
kinetic energy and its dissipation rate. This edge singularity in obtaining the 
similarity solution was also observed by Paullay et al. (1985) for the usual k-s model 
and by Stuttgen & Peters (1987) for Rotta's k-Z model. Paullay et al. (1985) 
introduced a transformation that stretches the finite edge to infinity and decouples 
the system of equations, thereby the numerical integration becomes stable and 
efficient. The transformation is 7 = q(Q, where 

When the governing equations are transformed to the <-coordinate, the resulting 
equations can be generally represented as 

Since the procedure of the coordinate transformation from (x, y)-coordinates to 
(x, 5)-coordinates is direct but lengthy, it is not described here. The coefficients A ,  B,  C 
and S are summarized in table 2. The similarity variable for the eddy viscosity 
relation of (2.6) is given by 

K31-G 1 d G  
1 + C  -- -- - "'E2 G3 (Ddcy}:' (5.7) 

Similarity variables for source terms in the k ,  E and y equations are represented by 
the following equations, 

sk(5) = pk,s(5) +Pk,n(c)-E(5) ,  (5.8) 

E 
S,([) = Cg,G(l-G)pk~s+Pk~n+C K K (5.10) 

The functional forms of Pk,Jg), Pk,n(<), x ( g )  and r(<) are summarized in table 3, and 
the boundary conditions are listed in table 4. At the symmetry boundary (5  = 0) ,  
reflecting boundary conditions are invoked for all dependent variables except the 
mean velocity for which W(y = 0) = 1. A t  the free boundary edge, the asymptotic 
value for the dependent variable is related to the inner grid value by analysing the 
behaviour of the transformed governing equation near the edge region (Paullay et al. 
1985). 

In order to test the grid dependence of the computations, all target flows were 
computed with four different numbers of grid points ; namely, 80, 100, 150 and 200 
cross-stream nodes. All these test runs showed 0.5% variations in the maximum 
Reynolds shear stresses, and the computed results with 150 nodes are reported in the 
present paper. The convergence of solutions was checked by the criterion, 
L'lq5ne, - #o]dl/zlq5new + &dl < lo+, for all dependent variables q5. 

In the above model equations, most of the empirical model constants are assigned 
by previously established values as summarized in table 5. The present intermittency 
model requires three additional model constants, Cpg, C,, and CC4. The constant CM 
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Plane jet Round jet 

A B C S A B C S 

0 1 0 -DW 0 1 0 -7DW 
v 1 0 TC,"K F 7 0 VBC""K 

DW &' c Dsk 27DW F 1 

uk 

F 

Plane wake Mixing layer 

A B c S A B C S 
- - - - 0 1 0 -DW 

- 7 1 0 0 
2Q 

0 

Dsk 0 1 - T - D - 
Q 2Q uk 

F+T- uL 1 
UM 

TC"" w' 

The superscript, ', indicates differentiation with respect to %. 
TABLE 2. Coefficients of similarity transformed equations 
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TABLE 3. Representation of source and sink terms in the 5-coordinate 

where 

TABLE 4. Summary of boundary conditions in the [-coordinate 

cp cw 'uv 

0.09 0.10 3.0 0.33 1.00 1.00 1.00 

c,, C€, C€, C64 CSl c,, c,, 
1.44 1.92 0.30 0.10 1.60 0.15 0.16 

TABLE 5. Values of model constants 

was determined using the experimental data of plane jets (Bradbury 1965; Gutmark 
& Wygnanski 1976) near the region where y x 0.5, and it turns out to be about 0.10. 
A number of trial computations revealed that the spreading rate and the Reynolds 
shear stress are more sensitive to C,, than to Cg3, which permitted relatively easy 
determination of the constant C,, = 0.1 to reproduce the measured spreading rate of 
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1 .O 

U - 
U,’ 

0.5 

0 I 2 3 
Y / B  

FIQURE 2. The streamwise mean velocity and the intermittency factor profiles for the plane jet. 
-, present k - e - y  model; --, k--E model of Hanjalic & Launder (1980); ---, CRSM of 
Byggstoyl & Kollmann (1986): 0,  data of Gutmark & Wygnanski (1976); 0, data of Heskestad 
(1965). 

0.03 

- 
uu - u; 0.02 

0.01 

0 I 2 
Y/B 

3 

FIQURE 3, The Reynolds shear stress profiles for the plane jet. Notations as in figure 2. 

the plane jet in Gutmark & Wygnanski (1976), and then C,, was selected to be 0.16 
by referring to the experimental intermittency factor profile. Note that these three 
values were selected based only on plane jet experiments. A preliminary calculation 
of the round jet with Ce3 = 0 yielded a spreading rate of 0.094 which is lower than 
0.098 by the HL model, but i t  is still higher than the experimental value of 0.086. The 
correct prediction i s  obtained when the constant of Pope’s vortex stretching model 
C,, is about 0.3, much lower than the originally suggested value of 0.79. 

Figures 2,3 and 4 show profiles of mean velocity and turbulence quantities in the 
plane jet. The computational results by employing the present k - 8 -7 model, HL’s 
k- -E  model, and Byggstoyl & Kollmann’s (1986) conditional Reynolds stress model 
(hereinafter referred to as CRSM) are presented together with the experimental data. 
The mean velocity profiles in figure 2 are compared with the HWA (hot-wire 
anemometer) data of Heskestad (1965) and Gutmark & Wygnanski (1976). The 
prediction with the HL model is slightly higher than experiments in the outer region, 
whereas the CRSM gives lower values. The present result lies in between these two 
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0.10 

0.05 

0 1 2 3 
Y / &  

FIQURE 4. The turbulent kinetic energy profiles for the plane jet. Notations aa in figure 2. 

profiles, and is in good agreement with the experiments. A comparison of the 
intermittency factor in figure 2 shows that the present mass entrainment model 
performs better than the original version of Byggstoyl & Kollmann (1986). For the 
Reynolds shear stress in figure 3, our k - e - y  model yields a profile closest to the 
experimental data among the three models. The same is true for the turbulent kinetic 
energy profile as shown in figure 4. The profiles of k and with the CRSM drop too 
rapidly in the outer intermittent region. Because of the less reliable HWA data in this 
region owing to the existence of backflows and large velocity fluctuations, Looney & 
Walsh (1984) argued that the assessment of turbulence models must be based on a 
comparison with data within y < 1.66. However, recent LDA (laser-Doppler 
anemometer) data of Ramaprian & Chandrasekhara (1985) for a water jet are nearly 
the same as previous HWA data in this region for Reynolds shear stress and the 
estimated turbulent kinetic energy by k = 0.75 (z+?). For the spreading rate, Rodi 
(1975) suggests a value of 0.11, but Looney & Walsh (1984) and Haworth & Pope 
(1987) recommend a value of 0.10 after surveying a number of recent experiments. 
The present model correctly produces this latter one, but HL’s model and the CRSM 
give 0.116 and 0.108, respectively. However, since the new constant C,, has been 
adjusted against the spreading rate, the present prediction only proves that the 
constant C,, has been properly assigned. The index for decay rate of the centreline 
mean velocity is defined as K,, = a(Jm/u2,)/az, where Jm is the momentum flux in 
the self-preserving region. The value of Kup summarized by Ramaprian & 
Chandrasekhara is in the range of 0.16-0.17 when the extreme values are discarded. 
The present k - B -  y model gives a value of 0.169, but HL’s model yields 0.206, which 
is much higher than the experimental upper bound. 

Computations of the round jet in stagnant surroundings are presented in figures 5, 
6 and 7. The computational results by employing the present k-s--y  model, HL’s 
k - e model, Janicka & Kollmann’s (1983) CRSM and Pope’s (1978) k- s model are 
compared with the HWA data of Wygnanski & Fiedler (1969) and Rodi (1975). The 
mean velocity profiles are shown in figure 5 .  The prediction with the CRSM is lower 
than experiments in the outer region. HL’s and Pope’s models follow the data of 
Wygnanski & Fiedler, whereas the present model follows the data of Rodi which were 
recommended as more reliable ones (Rodi 1975). As in the plane jet, the present mass 
entrainment model significantly improves the predictability for the intermittency 
factor of the round jet (figure 5). The differences in the predicted maximum Reynolds 
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FIQIJRE 5. The streamwise mean velocity and the intermittency factor profiles for the round jet. 
-, present k - E -  y model; --, k--E model of Hanjalic & Launder (1980) ; ---, k--E model of 
POP (1978) ; --- , CRSM of Janicka & Kollmann (1983) : 0 ,  data of Wygnanski & Fiedler (1969) ; 
17, data of Rodi (1975). 
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FIGURE 6. The Reynolds shear stress profiles for the round jet. Notations as in figure 5. 

shear stress as in figure 6 are quite remarkable; only the present model gives the 
correct peak value. The profiles for the turbulent kinetic energy are compared in 
figure 7. The present k - s - y  model and Pope’s model provide similar distributions 
of k in the whole region, which are good only in the outer region. The present 
centreline value of 0.072 is much lower than the hot-wire data, but is very close to 
the recent LDA data by Komori & Ueda (1985) as shown in figure 7. Note that, 
although their measurements were made in a coflowing jet, the centreline value must 
be comparable to that in the round jet in stagnant surroundings, because the mean 
velocity and the Reynolds shear stress are approximately the same as those of Rodi 
(1975) at the same streamwise locations. For the spreading rate, only the present and 
Pope’s models give the correct value of about 0.086, but the HL model yields 0.098 
and CRSM predicts a higher value of about 0.1 1. Here, it should be noted that Pope’s 
model constant was adjusted with respect to the spreading rate of this round jet. The 
decay rate for the centreline mean velocity defined as K,, = i3(Ue,,,/U,)/i3(x/D), is 
calculated to be 0.179 with the present model, which falls in the experimental range 
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FIGURE 7. The turbulent kinetic energy profiles for the round jet. A, data of Komori & Ueda 
(1985). Other notations as in figure 5. 
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FIGURE 8. The streamwise mean defect velocity and the intermittency factor profiles for the plane 
wake. -, present k-e-y model; --, k-e model of Hanjalic & Launder (1980); ---, CRSM 
of Byggstoyl & Kollmann (1986): 0 ,  0 ,  symmetrical airfoil & solid strip data Wygnanski et al. 
(1986), respectively; 0, data of Thomas (1973); V, data of LaRue (1974); A, data of Fabris 
(1979). 

of 0.169-0.185 by Wygnanski & Fiedler (1969). Both HL’s model and the CRSM 
yield about 0.22 which is significantly higher than the upper bound of the 
experimental range. 

Computations for a plane far wake with the three models are compared with the 
recent HWA data of Wygnanski, Champagne & Marasli (1986, hereinafter referred 
to as WCM). They investigated the effect of the wake generator on the downstream 
developments of the mean and turbulence quantities. Their major finding is that the 
normalized mean velocity is independent of the wake generator, but the turbulence 
intensity depends on it. The mean defect velocity profiles are compared with the data 
of a symmetrical airfoil in figure 8. The agreement is good for the k - 8 - y model ; the 
CRSM shows slightly distorted shape; and the profile with HL model drops too 
rapidly in the outer intermittent region. The calculated intermittency factor profiles 
are compared with the data of Thomas (1973), LaRue (1974) and Fabris (1979) in 

I 1  FLM 237 
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FIGURE 9. The Reynolds shear stress profiles for the plane wake. *, data of Pot (1979). Other 
notations as in figure 8. 
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FIGURE 10. The turbulent kinetic energy profiles for the plane wake. Kotations as in figure 8. 

figure 8. It can be seen that the present model allows more accurate prediction than 
the CRSM. Figure 9 represents the predicted and the measured Reynolds shear stress 
profiles. Two data sets obtained for the symmetrical airfoil and the solid strip by 
WCM are presented for comparison. Thc far-wake data behind a symmetrical airfoil 
by Pot (1979) which has been recommended as a target profile in the 1980-81 
Stanford conference by Pate1 (SCPSO, pp. 340-345) are also included. Clearly, the 
present model compares most favourably with the experiments, but the CRSM and 
HL models give significantly lower values, which imply that both models predict too 
small momentum transport. The improvement achieved by the present prediction 
is mainly due to the presence of the interaction model in the dissipation equation 
which decreases the level of dissipation, thereby increasing the momentum transport. 
Note that the interaction model results in a decrease of momentum transport in the 
jet flows in comparison with other models as shown in figures 3 and 6. Figure 10 
depicts the turbulent kinetic energy profiles. It is pointed out by Rodi (1975) and 
Thomas (1973) that  past measurements of k in the far wake are hardly reliable. WCM 
reports only the distributions of 2 for both the symmetrical airfoil and the solid 
strip. Hence, we have estimated the turbulent kinetic energy by using the 
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approximations of Townsend (1975, p. 107) that u2/w2 = 1.3 and u2/vz = 1.6. 
Such approximate estimations are represented in figure 10 for rough comparison 
with the predictions. The prediction with the k - E - y  model lies in between the 
two data sets; but the predictions with the HL model and CRSM are notably 
lower than the experiments in the outer region. The calculated spreading rate, 
S,  = a(0.5U,6/Ud)/ax defined by Rodi (1975), turned out to  be 0.0925 with the 
k-E- y model. This value is a little lower than 0.098 which was recommended at the 
Stanford conference, but i t  is within the range 0.08-0.10 measured by WCM. The 
spreading rate with the HL model is only about 0.06. Since the Reynolds shear stress 
level by CRSM is nearly the same as that of the HL model, the spreading rate with 
CRSM is also significantly underpredicted. The decay rate of the centreline defect- 
velocity, K,, = U,/U,(x/e) defined by WCM, varies in a range 1.561.88 in 
experiments for different wake generators. Here, 8 stands for the momentum 
thickness. The predicted values are 1.626 with the k - e - y model and 2.089 with HL 
model. These two parameters confirm the superiority of the k - e -  y model over the 
HL model and CRSM. 

Plane mixing layers with values of the velocity ratio, R, between 0 and 0.9 have 
been investigated. Here, R is the ratio of the lower free-stream speed U ,  to the higher 
one U,. As noted by Rodi (1975) and Haworth & Pope (1987), a plane mixing layer 
requires a long streamwise distance to attain full development of turbulence 
quantities. And the spreading rate and the turbulent structures are highly sensitive 
to the initial and the boundary conditions. Hence, the disagreement among the 
experiments is notable especially in the case of R = 0. Keeping this fact in mind, a 
comparison is made between the computational results and some typical experi- 
ments. In the 1980-81 Stanford Conference, Birch (SCPSO, p. 170) recommended 
a spreading rate relation of &/dx = 0.115 ( 1  -R) / ( l  +R) after syrveying experi- 
mental data. L is the distance between the points where U = 0.9% (U,-U,)+ U,  
and U = 0.1; ( U ,  - U,) + U,. The variation of the calculated spreading rates with the 
change of the velocity ratio is compared in figure 11 ( a )  with Birch’s correlation. The 
predicted variation of the spreading rate by the k -  E - y model almost coincides with 
Birch’s experimental correlation, where the H L  model underpredicts the spreading 
rates for all values ofR < 1.0. I n  the case ofR = 0, dL/dx = 0.118 with the k - e - y  
model and it is 0.100 with the HL model. When the shear-layer thickness is defined 
as 6 = I t ~ ~ , ~ - - y ~ . ~ l ,  Rodi (1975) recommends that d&/dx = 0.16. It is calculated as 
0.163 with the k-e-y  model and as 0.160 with HL model. The predicted peak 
values of the Reynolds shear stress are plotted in figure 11 ( b ) .  For the case of R = 0, 
the peak values are 0.0125 with the k -e -y  model, and 0.011 with the HL model. 
Both these values are within the range of experimental data, 0.008 (Hussain & 
Husain 1980) and 0.0137 (Sunyach & Mathieu 1969). Such wide scattering of the 
measured values does not allow us to make any conclusive judgement about the 
performance of each model. A theoretical analysis for the relationship between the 
Reynolds shear stress and the mean velocity profile has been done by Townsend 
(1976, pp. 227-230) and Pui  & Gartshore (1979). Their relationship is 

_ _  _ _  

- 
UV,,,/( U,  - UL)z = 0.078 (d&/dx) (1 + R)/( 1 - R). 

For internal consistency, the normalized maximum shear stress must be 0.0125 for 
the experimentally measured spreading rate of 0.160. This value is the same as the 
one predicted by the present model. 

The computational results for a plane mixing layer with a velocity ratio of R = 0.5 
are compared with the recent data of Mehta & Westphal (1986). The mean velocity 
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FIQIJRE 11. The changes of the spreading rate, ( a )  and the maximum Reynolds shear stress, 
( b )  for the plane mixing layer with a velocity ratio R .  
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FIQURE 12. The streamwise mean velocity and the intermittency factor profiles for the mixing layer 
with R = 0.5. -, present k - e - y  model; --, k - e  model of Hanjalic & Launder (1980): 0, 0,  
two data set of Mehta & Westphal (1986). 

profile in figure 12 calculated with the HL model shows too fast approach to the 
free-stream velocity at the high-velocity edge, and slower variation in the low- 
velocity side. The result with the present model matches satisfactorily with 
experimental data over the whole layer. The calculated intermittency factor profile 
is also included in figure 12. The Reynolds shear stress and turbulent kinetic energy 
profiles are compared in figures 13 and 14 respectively. Since Mehta & Westphal do 
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FIQURE 13. The Reynolds shear stress profiles for the mixing layer with R = 0.5. 
Notations a8 in figure 12. 
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FIGURE 14. The turbulent kinetic energy profiles for the mixing layer with R = 0.5. 

Notations a~ in figure 12. 

not report 3 distribution, the turbulent kinetic energy is estimated by k = 0.75 
(2 + 3). The present model predicts much improved profiles for both h and k in the 
high-velocity side. The new eddy-viscosity relation increases the momentum 
transport in the intermittent edge region, thereby the profile shape changes smoothly 
in that region. In a viewpoint of the interaction model, the high- and low-velocity 
sides are similar to wake and jet flows, respectively. The interaction model dictates 
the decrease of dissipation in the high-velocity side, so the turbulence intensity 
increases there. The converse is true in the low-velocity side. 

6.  Concluding remarks 
A physical model for the interaction between the mean shear and intermittency 

fields has been proposed in order to remedy the various anomalies in predicting 
turbulent jets, wakes and mixing layers. The proposed model is incorporated in the 
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dissipation rate and intermittency equations. Also a new eddy-viscosity model 
accounting for bulk convective transport by the mean velocity jump between the 
turbulent and irrotational fluids is formulated. The modelled equations are applied to  
the turbulent free shear flows mentioned above. The computed profiles for the mean 
velocity, the intermittency factor, the Reynolds shear stress, and the turbulent 
kinetic energy are favourably compared with available experiments. The proposed 
eddy viscosity relation permits more momentum transport in the intermittent 
region, especially for the wake and the mixing layer, than previous models, thereby 
the mean velocity and the Reynolds shear stress profiles are satisfactorily predicted. 
The interaction model increases the dissipation rate for the jets, and decreases i t  for 
the wake. The peak values of the Reynolds shear st,resses are predicted very closely 
to the experimental values for all turbulent free shear flows considered. Hence, the 
anomalies in predicting the spreading rates are satisfactorily resolved. Comparisons 
of the intermittency factor indicate that the addition of the interaction term in the 
mass entrainment model improves the predictability. 

I n  contrast to the method of the Kollmann group (1981, 1983, 1986) based on the 
zone-averaged stress equations, the present work is based on the conventional 
Reynolds averaged equations. The overall agreement of the computational results 
with the experimental data supports the present approach of taking into account the 
intermittent nature of the flow. Although this approach loses much information on 
the dynamics of turbulent and irrotational fluids, i t  is more economical in the sense 
that it halves the number of partial differential equations to  be solved. 

The similarity solution method of Paullay et al. (1985) has been adopted in 
obtaining all numerical solutions reported in this paper. Although this method was 
originally applied to plane and radial jets by them, it also works very well for the 
round jet, the plane wake and the planc mixing layer. Solutions with usual numerical 
marching techniques, such as the finite-difference procedure of Patankar & Spalding 
(1970), inevitably involve numerical errors (Launder & Morse 1979). Therefore, the 
similarity solution method is preferable in comparing the performance of turbulence 
models for self-preserving flows. 

I n  this paper, the proposed k - E -  y equation model has been applied only for free 
shear flows. Recently, preliminary tests of the model have been done against various 
wall bounded flows, and it has been found that the present model is also capable of 
describing the flow field between a wall boundary and a free or a symmetric 
boundary. Further study is required to pursue its applicability for a wider range of 
wall-bounded shear flows. 

The authors wish to thank the reviewers for their invaluable comments and 
suggestions which led to improvements in the quality of this paper. 
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